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Critical behaviour of a compressible n-component model with 
cubic anisotropy 

T Nattermann 
Sektion Physik, Karl-Marx-Universitat, 701 Leipzig, DDR 

Received 22 February 1977, in final form 21 April 1977 

Abstract. A generalisation of the Larkin-PikinSak model, in which an n-component 
order parameter @ is coupled to an elastic continuum, to the case of cubic anisotropy is 
studied in a renormalisation group calculation. It is shown to all orders in e = 4 - d that the 
inclusion of cubic anisotropy in the coupling terms yields a second-order transition if and 
only if all ai = 2cpi - vd <O ( i  = 0,1,2). Here cpo = 1 and cpl, cp2 are the cross-over scaling 
exponents for the variables &q52 and 4;- &,respectively. In this case the behaviour is that 
of the rigid model. If there is at least one ai > 0 (e.g. king and anisotropic XY and 
Heisenberg model) the absence of a stable fixed point is interpreted as a first-order 
transition. If the transition is close to second-order, renormalised exponents may be 
observed. The extension of the Fisher-Sak renormalisation of exponents (pi/ U),,, = 
( p i  -ai)/. is given, and an application to perovskite-type crystals is briefly discussed. The 
generalisation of the results to the case of lower symmetry and their relevance for other 
systems with non-analytic interaction is mentioned. 

1. Introduction 

The question of how the elastic degrees of freedom influence a phase transition is an old 
question in the theory of phase transitions. Since there is a recent very comprehensive 
paper on this topic (Bergman and Halperin 1976, see also de Moura et a1 1976) which 
gives an excellent review about the history of this question we will not repeat their 
introduction and refer the reader to this paper. We only want to mention the papers 
which try to treat this problem by a renormalisation group (RNG) calculation and are 
related to the present work. The first paper in this series is that of Sak (1974) who 
considered an isotropic n -component Heisenberg model which is coupled to an 
isotropic elastic system by a coupling term which is likewise isotropic. Since the author 
used the harmonic approximation for the elastic degrees of freedom the latter can be 
eliminated from the partition function. This leads to an additional four-spin interaction 
in the Hamiltonian which is non-analytic for k = 0, where k denotes the transferred 
momentum. A RNG calculation then shows, that if and only if the specific heat exponent 
a of the incompressible model is positive as in the case of the Ising model, a new 
‘renormalised’ fixed point is the stable one. However, this fixed point is unphysical for 
fixed external pressure since it cannot be reached if one starts from physically allowed 
values of the bare coupling constants. From this fact Sak (1974) concludes a first-order 
transition which can be justified better if one integrates his recursion relations. In the 
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opposite case a < 0 (XY, Heisenberg model) the behaviour is that of an incompressible 
model. 

Very recently, a paper by de Moura et a1 (1976) appeared, considering a model 
which is essentially that of Sak (1974) but which includes an anisotropy in the elastic 
degrees of freedom. Following the line of Sak (1974) they find for a > 0 that the new 
‘renormalised’ fixed point is actually stable against isotropic perturbations, but it is not 
stable with respect to anisotropic perturbations. From this they conclude a first-order 
transition. In the case of the king model this conclusion is supported by an independent 
RNG calculation of Bergman and Halperin (1976) who are able to estimate the 
instability temperature. For a < O  the behaviour is again that of the rigid model. 
Moreover, the authors argue that also the inclusion of non-isotropic coupling terms 
between the elastic and the order parameter systems would not change the results. Such 
coupling terms reflecting the cubic (or lower) symmetry of the crystal are particularly 
important in the case of systems undergoing structural transitions (Aharony and Bruce 
1974, Bruce and Aharony 1975). Other RNG calculations have been performed by 
Wegner (1974) Rudnick et a1 (1974), Imry (1974) and Aharony (1973a). Khmel’nitzkii 
and Shneerson (1975) used a parquet graph approach and obtained similar results as 
those of de Moura et a1 (1976). 

The crucial role played by the specific heat exponent a in all before-mentioned 
papers arises due to the fact that the elastic deformations couple only to the energy 
density of the order-parameter system. If one includes other types of couplings one 
must expect that the specific heat exponent will lose this dominating role. 

It is the aim of this paper to show that the inclusion of such anisotropic coupling 
terms actually changes the picture drastically. In particular, we will consider a model 
with cubic anisotropy. Then it turns out that if and only if all ai = 2cpi - vd (i = 0,1 ,2)  
are negative the transition is of second order. Here cpo  = 1 and cpl, cpz  are the cross-over 
scaling exponents for the variables 4142 and 4:- &, respectively (Pfeuty et a1 1974). 
In this case the behaviour of the system is that of the rigid model. If on the other hand at 
least one of the ai is positive there is a new ‘renormalised’ fixed point reflecting the 
compressibility of the model. This renormalised fixed point is stable with respect to 
isotropic but unstable with respect to anisotropic perturbations. If the system is close to 
this fixed point renormalised critical behaviour will be observed. New relations 
between the renormalised exponents and those of the rigid model are obtained. 
However, since there is no stable fixed point we expect that the system undergoes a 
first-order transition. 

After this work had been performed the present author was informed about a recent 
paper of Bender (1976) who considered essentially the same problem, but did not take 
into consideration the possible renormalisation of exponents which may be relevant for 
the explanation of experimental data (see 9 5 ) .  

The paper is organised as follows: in 9 2 we derive the effective Hamiltonian of the 
compressible model in the case of cubic anisotropy; 9 3 is devoted to the RNG analysis to 
all orders in E .  There the fixed points and their stability as well as the renormalisation of 
exponents is discussed. Since the calculations are fairly tedious, we derive some of the 
results in 9 4 in a more heuristic manner. Thus, the reader who is mainly interested in 
the final results may leave out 9 3. Further, 9 4 includes a discussion of the critical 
behaviour of the compressible model. 

Finally in 9 5 the content of this paper is summarised and some extensions of the 
model and conclusions are discussed. The appendix includes an explicit O(E’) calcula- 
tion based on the results of 9 3. 
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2. Effective Hamiltonian 

We start with a Hamiltonian consisting of three parts 

ri = He, + H, +Hint 

where He, and H,,, describe the elastic displacement field u,(x)(a = 1, 
ti-component order parameter & ( x )  (a = 1 , .  . . , E), respectively: 

. . .  

{caoVs} are the components of the elastic tensor and epo(x )  denotes the strain tensor 

1 au, aUo au,au, 
2 axs ax, ax, axp 

e,@ ( x )  = - (- + - + --). 
Since we want to consider a system with cubic anisotropy there are only three different 
elastic moduli 

(Y ZP.  (2.4) 1 
c,,,, = c11, Caaf3P = c 1 2 ,  COPPP = s c 4 4 ,  

Under the same symmetry H, is given by (Wilson and Fisher 1972) 

Here we excluded a possible cubic anisotropy in the quadratic part of the Hamiltonian 
for the sake of simplicity (see 9 5 for a discussion). 

Finally the interaction between the two fields e e B ( x )  and 4,(x) can be put in the 
following form (Aharony and Bruce 1974) 

Here the terms with the coefficients gl  and gz reflect the cubic anisotropy of the model 
and represent the new feature of our approach. Because of the coupling between spin 
and space variables we have to choose ti = d. 

For our further considerations it is very convenient to use a tensor representation for 
all coupling constants. Indeed, in the case of cubic anisotropy we can represent an 
arbitrary fourth rank tensor by the quantities A’,p,ys (j = 1,2,3) ,  where 

and 

(1 if a = p  = y = 8 
gaPY.3 = lo 

otherwise. 
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Note, that A & Y s  is symmetric with respect to the permutations cuc,P, y*S and 
cu,P c, y,S and obeys the relation 

(4’YUe = 1 A b B . Y 6 4 ? 4 6 .  
Y.6 

Following now Larkin and Pikin (1969) we write 

(2.10) 

(2.11) 

where V is the volume of the system at equilibrium. Then 

(2.12) 1 
PHel= PHei(eO,B)+- 2 A, , (k )u , (k )u , ( -k )+O(u3)  2 v k f O  a.@ 

where 

Aa6 ( k )  = C c , y ~ s k y k s .  

Similarly, for the interaction Hamiltonian we get 

Y. 6 
(2.13) 

where 

(2.15) 

and 4: is the Fourier transform of &(x). Hel(e:B) and Hint(e:B) depend only on the 
k = 0 component of the strain field, Treating them, we distinguish two cases. 

First we leave all e i B  constant which means choosing pinned boundary conditions 
(case 1). Then, since H i s  quadratic in ua, we may perform the integration over all u , ( k )  
in the partition function. The result can be rewritten as a new effective Hamiltonian 
arising from the elimination of this degrees of freedom: 

(2.16) . * .  
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where 
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(2.17) 

Since Ul?&&) depends only on the direction of k ,  we find that the elimination of the 
elastic degrees of freedom leads to a non-analytic behaviour of the interaction at k = 0. 

Next, we want to consider the system under fixed external pressure (case 2). To this 
aim we have to add a term - V Ea,,  vapg:, to the Hamiltonian. Here f f m p  denotes the 
stress tensor. Then we obtain for the eap dependent part of the Hamiltonian 

where the definitions of (eo)& ( c T ) ~ ,  are the same as in (2.10). Further we made use of 
the representation 

cl=C11+(d-l)Cl2 

(ii = d )  (2.19) 

c3 = c, 1 - c12 

Integration with respect to the e:, now yields an additional contribution HLff to the 
for the elastic constants (fi = d).  

effective Hamiltonian: 

Since the first term only includes the external stress we may neglect i t  for our further 
discussions. The second term describes the interaction of the order parameter with the 
external stress. Putting ((T):, = -pS,, we obtain only a shift of the critical temperature 
whereas ( C T ) ~ ~  may affect the system in such a way, that only n s f i  components of the 
order parameter (or linear combinations of them) become critical simultaneously. Then 
only these n components of Q, have to be considered in the asymptotical region (see e.g. 
Nattermann and Trimper 1975). 

The third term of (2.20) yields a contribution to the effective interaction t7:iyti(k = 
0) at zero momentum transfer 

It is now convenient to subtract the angular average of t7?iyS(k f 0) from the effective 
interaction and put it into ii? and ii:. To this aim we define new coupling constants U?, 
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Here ( . . . )& denotes the angular average: 

(2.22) 

(2.23) 

(2.24) 

where d a d  is the surface element on the d-dimensional unit sphere. 
We are now able to write the total Hamiltonian H = H,+H,ff as 

(2.25) 

(2.26) 

i.e. we choose eBp (or f lap) in, such a way, that only the first n (SA) components of Q, 
become critical simultaneously and neglect the influence of the remaining ones. For the 
sake of brevity we omit this elementary discussion here and refer the reader to Aharony 
and Bruce (1974), Bruce and Aharony (1975). 

The choice of the different conditions of fixed strain (case 1)  or fixed external stress 
(case 2) only affect the effective interaction u2 iYs(k )  at zero transferred momentum 

(2.27) 

whereas ~l2$$~(k # O )  is given by (2.23) in both cases. We emphasise that it is the 
non-analytic behaviour of the interaction u: , , .~(&)  for k + 0 which makes the model so 
interesting. The influence of this non-analytic interaction on the critical behaviour for 
systems with cubic or lower symmetry is the topic of the following sections. 

3. Renormalisation group analysis 

In this section we will use the skeleton graph approach to derive the RNG equations 
(Tsuneto and Abrahams 1973, Nattermann 1975, Ginzburg 1975). This is a self- 
consistent perturbation theory where the Green-function lines and the vertex parts 
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used in a diagrammatic expansion are (partly) renormalised ones. Denoting the 
renormalised coupling constants by 

where G = v $ y S .  We denote u!p,yS by a broken line separating the external legs of a, /3 
and y, S lines, Then from the diagram structure of the skeleton graphs it is clear that a 
diagram with broken lines contributes to ui if and only if all broken lines are edges of 
closed loops (see figure 1). On the other hand diagrams to v!s,yS include at least one 
broken line outside of a closed loop (see figure 2). Thus we can write 

Id1 l e i  

Figure 1. Feynman diagrams giving the lowest order contributions to the renormalised 
coupling constants u l ,  u2. The vertex parts ul, u2, and U&,, are represented by full circles 
and by a broken line, respectively. 

Id I le! 

IA I iB1 

Figure 2. Feynman diagrams contributing to the renormalised vertex part u ~ ~ , , ~ .  There are 
no terms higher than quadratic terms in U$,,, outside a closed loop. 
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Here (dui/dt)lt=o and F(((u2)'(6)'),) denote the sum of all graphs without and with 
broken lines, respectively, contributing to ui. In other words (dui/df)b=o = t,b(ui) simply 
represents the RNG equation of the incompressible model. These equations are well 
known, therefore we will not sum them up here (see e.g. Aharony 1973b, Ketley and 
Wallace 1973). 

The graphical representation of the equation for u$,ys(f, k )  is depicted in figure 3. 
Analytically we find to all orders in E = 4 - d (better: to an arbitrary number of loops) 

dvzB,ys(r, k ) / d t  = v2p,ys(r, k)(--E + 27)  

We note that the right-hand side of equation (3.4) includes only linear and quadratic 
terms in u ~ p , r s  (but of course higher order terms in ( ( u ~ ) ' ( V * ) ' ) ~ ) .  This is related with the 
fact, that the only diagrams in the Bethe-Salpeter equation for which contribute 
to the non-analytic behaviour for k -* 0 are ladder diagrams with respect to the broken 
lines. Since all vertex parts and Green functions are renormalised, the contributions of 
diagrams with three and more broken lines not being edges of closed loops are already 
included in equation (3.4). ~ a p , y s  and Taap,ys are given by a series of diagrams including 
ui and ( ( U ~ ) ' ( G ) ~ ) ~ .  Their lowest order terms follow from figure 2. 

Now we write 

and similarly: 

( 3 . 5 ~ )  

(3.5b) 

(3.6) 

In order to get the fixed point values for the coupling constants we have to put the 
right-hand side of the equations (3.3) and (3.6) equal to zero. 

Let us first consider the case k # O .  Since the coefficients of the equations for 
U Z ~ , ~ ~ ( ~ )  are independent of 6 we conclude, that the fixed point solution u ~ p , y s  also has 
to be independent of 6 = k/ lk l .  Hence 

uZ$,,s(k # 0) = (U$,& # O)), = 0 (3.7) 
because of the definition of u:p,y6 (see equation (2.24)). This result implies important 
consequences; namely that all diagrams where broken lines are edges of closed loops 
vanish close to the fixed point. Therefore there are no contributions from broken lines 
to ul, u2 and thence their fixed point values are those of the rigid model. 

In order to test the stability of these fixed points we have to linearise the equation for 
ui -U?. Since ~ ! $ , , , ~ ( k  # 0)= 0 the linearised right-hand side of equation (3.3) does not 
include,terms proportional to ~ f l : ~ , ~ ~ .  Hence also the local stability of the solutions and 
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in particular the eigenvalue exponents are those of the rigid model. Similar from the 
diagram structure of the self-energy it follows that the exponents q and S are those of 
the incompressible model. 

Let us now determine the fixed point values of vz8,vs(k = 0) = viSijA &ys.  Using (2 .8)  
and (3.6) we get for v,  

d v i / d t = ~ i ( - E + 2 q  + 2 ~ i + ~ i ~ i ) = O  (3.8) 
where 

wi = oi(t + -CO, k = 0) xi = xi(t + -03, k = 0). 
Hence 

(i ) v * = o  

(ii) v * x i  = E - 2 q  - 2wi= ai/v. 

(3.9) 
(3.10) 

We will call these two fixed points rigid (solution (3.9)) and renormalised (solution 
(3.10)). 

Actually there are seven renormalised fixed points corresponding to the different 
combinations for ( v i ,  u?,  v z )  with at least one v?  # 0. If we speak in the following about 
the rigid and the renormalised fixed point we mean by that point in particular the 
vanishing and non-vanishing components of { v? } ,  respectively. 

At this point we want to interrupt our RNG analysis in order to derive very useful 
relations between wi (and hence xivT) and the cross-over scaling exponents pl, p2 for 
the variables C#1C#2 and C#?-&, respectively. To this aim let us add a quadratic 
perturbation 

c 

(3.11) 

to the Hamiltonian H. We begin with the remark that, at the renormalised fixed point 
v? # 0, broken lines contribute only tree-like diagrams to the self-energy (figure 3). In 
this case v28,ys has to be taken at zero momentum. 

- + -t 

I31 I bl 

Figure 3. Tree-like diagrams contributing to the self-energy. 

It is convenient to derive the exponents pl, (p2 and the susceptibility exponent y 

(3.12) 

where Z a p  denotes the self-energy part. This Ward-identity can be cast in the form (see 
e.g. Nattermann 1977) 

from a Ward-identity for 

A ; ~ , ~ ~  = A&,A,-a c,,/ai~pl,I=ou k(v-+'Pl)'u 
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It is now easy to see that in the rigid case v? = 0 the right-hand side of (3 .13)  corresponds 
to the diagram of figure 2 ( A )  if one omits there the left external legs. 
In other words: qupa,y6 = jLpa,vs and hence 

(3 .14)  

The exponents qi(i = 0, 1 , 2 )  are the cross-over exponents for the perturbations B2, 
C$1C$2 and C$? - &, respectively, for the rigid model. Since rpo = 1, equation (3 .14 )  for 
i = 0 is actually a relation between wo and y = u(2 - 77). 

In the renormalized case v?  # 0 on the other hand, one has to include additionally 
the diagram of figure 2(B)  amputating again the left external legs. Therefore &p,ys = 

uwi = y - rpj. 

+v?&,,~ and hence 

wi,r = oj + X i V T  = E - 277 - wi. (3 .15)  

This is an important relation and represents an extension of the Fisher-Sak renormal- 
isation of critical exponents. Indeed, from (3.10),  (3 .14)  and (3 .15)  we get 

or 

(3 .16)  

(3 .17 )  

For i = 0 a0 = (Y and therefore (3 .17)  reduces itself to Sak's result (Sak (1974)  obtained 
here in a diagrammatic manner. For i # 0 the result is new. 

However, we note that a renormalisation of exponents occurs only for those exponents 
for which the corresponding fixed point value v?  # 0. For example, there is only a 
renormalisation of y (and hence of U ,  a) if v $  # 0. 

In order to decide which of the solutions (3.9),  (3 .10)  are the stable ones we have to 
look for their local stability both against isotropic and anisotropic perturbations (de 
Moura eta1 1976, Bergman and Halperin 1976). From (3 .8 )  we get from a linearisation 
around the fixed points for Avi = vi - U? 

dAvj /d t=A~i( -E+277 +20~i+2x ivT) ,  (3 .18 )  

and hence 

where 

E - 277 -20,. =  ail^ if v T = O  (3 .20)  
--E + 277 + 2wi = - f f i / v  (3 .21)  

A i  ={ 
if vTxi = ~ - 2 ~ - 2 w ~ .  

Since we are interested in the limit t = ln(q/A)+ --OO the solution with Ai < 0 is stable 
with respect to isotropic perturbations. 

In the same manner we find the linearised equation for anisotropic perturbations 
Av!B,ys(k # O)=  v!8,ys(k # 0) (see equation (3 .6 ) )  

dAv!pa,ys(k #O)/dt =Av$yS(k # O ) ( - E  +277 +wi(IkI)+wj(IkI)) (3 .22)  
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and therefore 

At'$vs(k f 0) = A2p,ys(A/q)Atj"k') 

hij = E -277 - ~ i ( ~ k ~ ) - ~ j ( ~ k ~ ) .  

In particular, for k < S-'oi(lkl)= wi and therefore 

1 a1 + ' y j  A., =--. 
2 v 

(3.23) 

(3.24) 

(3.25) 

From (3.20), (3.23), (3.25)it follows, that the system has a stablefixedpoint if and only if 
all ai < 0.  For i = 0 our result agrees with that of de Moura et af (1976). For i f 0 the 
same conclusion was drawn in a recnet independent calculation of Bender (1976), 
however as it was already noted in § 1 this author did not take into account the possible 
renormalisation of the exponents as given here. An explicit O(E') calculation of a i / v  is 
given in the appendix. 

4. Critical behaviour 

For the reader who is mainly interested in the final results we start in this section with an 
alternative derivation of some results of 0 3. From a simple scaling analysis it follows, 
that at the rigid fixed point where the system behaves as an incompressible one, the 
renormalised vertex parts ri and A!p,y6(k) corresponding to up and ~ ? $ ~ ~ ( k ) ,  respec- 
tively, scale as (see e.g. Brezin et a1 1976) 

Here vui = y - cpi and cpc (i = 0, 1,2)  are the cross-over exponents for the perturbations 
Q 2 ,  4142, 4;- &, respectively, 6 denotes the correlation length. Obviously, for 

Azp,y6(& k )  vanishes faster than r&) and the rigid fixed point remains stable. On the 
other hand for 

ai +aj 
> O  

V (4.3) 

the opposite situation appears and therefore the rigid fixed point becomes unstable. If 
there is a new renormalised fixed point where the vertex parts become relevant 

( r i ( 5 ) ) r e n  cc (&,+(S))ren (4.4) 

must be valid. Using the result of Sak (1974) that there is no renormalisation of r ]  we 
get (A$,ya(S))ren cc (-€+2v , The diagrams which contribute to the renormalisation of 

are given in figures 2(A) and 2(B). Little reflection then yields 

(A$&))ren Oc ( - ( o ~ + w i ~ r ) ,  (4.5) 

where qr = v;'(y, - vir) is the corresponding renormalised exponent. 
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From (4.4), (4.5) we obtain (our previous result equation (3.15)) 

E-2277=Wi+Wi.r (4.6) 

Using the definitions of wi and ai we find immediately 

and 

(4.8) 

Put another way and following Sak (1974), the k = 0 contribution of the non-analytic 
interaction can be written (equations (2.25), (2.27)) as 

Equation (4.9) represents a coupling between the ‘energy-like’ densities [4’(x)Ji of 
infinite range and can be treated by a mean field assumption. Hence we can substitute 
for (4.9) the expression 

(4.10) 

where ei is an averaged energy-like density. This density (in the framework of the 
original Hamiltonian) scales as 

(4.11) 

On the other hand starting with the substituted Hamiltonian (4.10) we get ( d ’ ( ~ ) ) ~ a [ - ~ ~  
and thence -d& dk,r + d = 0 which implies (4.6)-(4.8). 

The more careful analysis of 0 3 then showed, that this new renormalised fixed point 
is unstable against anisotropic perturbations. Thus, if at least one of the ai = 2pi - yd is 
positive, a first-order phase transition has to be expected. This result has the simple 
physical meaning, that there is a second-order transition only if the non-analytic 
behaviour of the renormalised coupling constants vanishes by approaching the critical 
point (i.e. if all ai < 0): Ti + 0 for [ + 00. Then the critical behaviour is that of 
the rigid model. 

However, this condition does not seem to be realised in the most interesting cases 
n = 1, 2, 3 (i.e. Ising, XY and Heisenberg model). Indeed, considering the fixed point 
behaviour of u1 and U’ we only remind on the fact that for n < n, the isotropic 
Heisenberg fixed point is stable whereas for n > n, the cubic fixed point is the stable one. 
The value of n,  depends on the order of the accuracy but at present most authors believe 
that for n S 3 the isotropic fixed point is stable (see e.g. Aharony 1973b). Then in three 
dimensions we have for n = 1 a > 0 and for n = 2 , 3 a  < 0 but with rpl/’(n = 2)= 1- 175, 
v(n = 2)= 0.673 and (p1/2(n = 3)= 1.25, v(n  = 3)= 0.7 (Pfeuty et a1 1974) we get 
allz(n = 2)= 0.33 and a ~ / ~ ( n  = 3)= 0.4 which are positive. In other words: for the 
anisotropic XY and the Heisenberg model U: = 0 but there are no stable fixed points for 
U?, U:. Previous experience with such a runaway leads to its interpretation as a 
first-order transition (see e.g. Nattermann and Trimper 1975, see also 0 5). 
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5. Summary and conclusions 

The aim of this paper has been to investigate the influence of the cubic anisotropy on the 
phase transition in a compressible model. 

(i) In the case of cubic symmetry there are in general three different coupling terms 
describing the interaction between the order parameter and the elastic degrees of 
freedom. After eliminating the elastic deformations from the partition function 
additional non-analytic four-spin coupling terms appear in the Hamiltonian. 

(ii) A renormalisation group calculation to all orders in E = 4 - d then shows, that 
the transition is of second order if and only if all ai = 24q - vd < 0 (i = 0, 1,2). Here the 
cpi denote the cross-over exponents for the perturbations a2, &q5*, - &, respec- 
tively (q0= 1). In this case the critical behaviour is that of the rigid model. 

(iii) If on the other hand for some i ai>O there is a renormalised fixed point 
vTxi = ai/u which is stable against isotropic perturbations. Close to this fixed point q 
and S take their values of the rigid model. On the other hand, there is a renormalisation 
of the exponents pi, ai = 2qi - vd according to 

for those i (and only for those) with ai > 0. For i = 0 and if a. = a > 0 this equation 
determines the renormalised value vr of v and agrees with an earlier result of Sak 
(1974). However, the renormalised fixed point v?  # 0 is unstable with respect to 
anisotropic perturbations. Thus a first-order transition is expected for the Ising and 
anisotropic XY and Heisenberg model independently of the external conditions (i.e. 
constant volume or constant pressure). 

(iv) Explicit results for the ratios a i / v  are given to order E'. 

From the discussion in § 3 it is obvious that we could use also a more complicated 
form for vz (k )  which is compatible with the cubic anisotropy of the model, i.e. we could 
include anisotropic gradient terms (Nattermann and Trimper 1975, Nattermann 1976), 
dipolar interaction (Fisher and Aharony 1973) etc. This would not change our results 
concerning the stability of u::,,~. However, the fixed points U T  itself may become 
unstable (Sokolov 1975). 

Usually, the ratios gl/go and gz/go measuring the strength of the anisotropy of the 
interaction Hamiltonian Hi,, are very small for magnets, but large for crystals undergo- 
ing structural transitions (Murata 1976). Thus our results should apply in particular in 
the last mentioned case. 

A precise assertion about the nature of the transition and the critical behaviour in 
the case ai > 0 is only possible if one integrates the recursion relations for v2(k),  ul, u2 
and v!~,,,&) from 4 = A to 4 = (-', where ( denotes the correlation length. This is 
obviously a very hard task. Nevertheless it is possible to estimate roughly the region 
where the anisotropic perturbations become important by 

If the initial values vp are close to the fixed point values v? # 0 or if the anisotropic 
perturbations become important only very close to the fixed point, one expects to 
observe renormalised exponents before the system undergoes presumably a first-order 
transition. 
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A further remark is connected with the fact, that ui cannot change its sign under the 
renormalisation group iteration. This can be seen easily from the integration of 
equation (3.8). Thus the bare values of the coupling constants up must be positive if the 
system should approach the renormalised fixed point U? > 0. If vp < 0 but U? > 0 this 
leads to a second mechanism for the occurrence of a first-order transition, a fact which 
was first considered by Sak (1974). For i = 0 one finds in case 1 u F > O  and in case 2 
up < 0. Although we did not check this explicitly the same situation may exist for i # 0. 

The renormalisation of exponents is particulary important for the exponents ai 
where = -ai/(l -a). Similarly, at a structural transition the ultrasonic attenuation 
diverges with the exponents pi = ai + vz (Murata 1976). Since zr = z (this follows from 
7, = 7) the renormalised values pi,r = qr+ vrz are considerably lower than those of the 
rigid model. For example in SrTi03 (n = 3) we find with z == 2, ao(n = 3) = -0.1, a, = a, 
v, = v, and hence PO = p0.r = 1.3. However, since a112 = 0 - 4  and hence ( ~ 1 / 2 , ~  = -0.4 one 
gets 1.8 but pl/2,r= 1.0. If one takes for granted that one is close to the 
renormalised fixed point this renormalisation of exponents explains why one observes 
the lower value po in many experiments instead of the higher one p l I 2  (Murata 1976). 
Clearly this question deserves further investigations since it is not clear under which 
conditions the system actually comes close to the renormalised fixed point. These 
conditions may change in determining the different pi. 

Another interesting application of our calculation represents the transition in 
improper ferroelectrics. In these substances the order parameter @ is different from the 
polarisation P. Such systems can be described by the Hamiltonian (see Khmel’nitzkii 
1971) 

H = H,  + Hp + Hi,, (5.2) 

where H,,, is given by ( 2 . 5 )  with n = 2 and 

where ,YO denotes the bare electric susceptibility and 

The angular dependent part in (5.3) arises from the elimination of the electric field 
caused by the polarisation fluctuations and is characteristic for uni-axial ferroelectrics. 
Performing the Gaussian integration over Pk in the partition function, we obtain for 
zero external electric field the effective Hamiltonian (2.16) with 

Thus, the elimination of the polarisation leads to a non-analytic interaction for the 
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5. Summary and conclusions 

The aim of this paper has been to investigate the influence of the cubic anisotropy on the 
phase transition in a compressible model. 

(i) In the case of cubic symmetry there are in general three different coupling terms 
describing the interaction between the order parameter and the elastic degrees of 
freedom. After eliminating the elastic deformations from the partition function 
additional non-analytic four-spin coupling terms appear in the Hamiltonian. 

(ii) A renormalisation group calculation to all orders in E = 4 - d then shows, that 
the transition is of second order if and only if all ai = 2pi - vd < 0 (i = 0, 1, 2). Here the 
cpi denote the cross-over exponents for the perturbations a', 4142, 4?-&, respec- 
tively (cpo 1). In this case the critical behaviour is that of the rigid model. 

(iii) If on the other hand for some i ai > 0 there is a renormalised fixed point 
v?xi = a i / v  which is stable against isotropic perturbations. Close to this fixed point 7 
and 6 take their values of the rigid model. On the other hand, there is a renormalisation 
of the exponents cpi, a, = 2cpi - vd according to 

for those i (and only for those) with ai > 0. For i = 0 and if a0 a > 0 this equation 
determines the renormalised value ur of U and agrees with an earlier result of Sak 
(1974). However, the renormalised fixed point v?#O is unstable with respect to 
anisotropic perturbations. Thus a first-order transition is expected for the king and 
anisotropic XY and Heisenberg model independently of the external conditions (i.e. 
constant volume or constant pressure). 

(iv) Explicit results for the ratios ai/v  are given to order E'. 

From the discussion in 0 3 it is obvious that we could use also a more complicated 
form for v 2 ( k )  which is compatible with the cubic anisotropy of the model, i.e. we could 
include anisotropic gradient terms (Nattermann and Trimper 1975, Nattermann 1976), 
dipolar interaction (Fisher and Aharony 1973) etc. This would not change our results 
concerning the stability of u $ , ~ ~ .  However, the fixed points U? itself may become 
unstable (Sokolov 1975). 

Usually, the ratios g,/go and g2/g0 measuring the strength of the anisotropy of the 
interaction Hamiltonian Hi,, are very small for magnets, but large for crystals undergo- 
ing structural transitions (Murata 1976). Thus our results should apply in particular in 
the last mentioned case. 

A precise assertion about the nature of the transition and the critical behaviour in 
the case ai > 0 is only possible if one integrates the recursion relations for v2(k) ,  u1, u2 

and U$&) from q = A to q = [-I, where [ denotes the correlation length. This is 
obviously a very hard task. Nevertheless it is possible to estimate roughly the region 
where the anisotropic perturbations become important by 

If the initial values up are close to the fixed point values U ?  # 0 or if the anisotropic 
perturbations become important only very close to the fixed point, one expects to 
observe renormalised exponents before the system undergoes presumably a first-order 
transition. 
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and at the cubic fixed point 

(- 19n + 3 26n - 424)) (n - 1 ) ~  nE/vC=-  4-n-- 
3n i 27n2 

E E 
aT/vC=-(3n -4  + 7 ( - 3 n 3 +  127n2-530n +424)) 3n 27n 

(A.6) 
a;/vc=-(n E +4--(19n3+131n2-538n E +424)). 

3n 27n2 

Using these results we remind of the restriction n C d for a 2  and a3. In three 
dimensions one gets from (A.2), (A.3) for n = 2 ,3 :  {aH/vH}  = {-0*08,0.48,0.48} and 
(-0.22, 0.54, 0.54), respectively, At the cubic fixed point (equations (A.4), (A.5), 
(A.6)) one finds for n = 2 (a~/v’)={O-lO, 0.10, 0.96) and for n = 3 {ar/v?={-O*24, 
0.51, 0.55). Note, that at both fixed points there is at least one a i / v  > 0. 

Note added in proof. In a recent paper, Murata (1977) obtained, to O(E’), the same 
results as in the present paper. However, he did not consider the generalisation of his 
results to all orders in E and to lower than cubic symmetry, nor did he consider their 
application to other systems with non-analytic interaction. 
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